Multi-dimensional Color Histograms for Segmentation of Wounds in Images

نویسندگان

  • Marina Kolesnik
  • Ales Fexa
چکیده

The work investigates the use of multi dimensional histograms for segmentation of images of chronic wounds. We employ a Support Vector Machine (SVM) classifier for automatic extraction of wound region from an image. We show that the SVM classifier can generalize well on the difficult wound segmentation problem using only 3-D dimensional color histograms. We also show that color histograms of higher dimensions provide a better cue for robust separation of classes in the feature space. A key condition for the successful segmentation is an efficient sampling of multi-dimensional histograms. We propose a multi-dimensional histogram sampling technique for generation of input feature vectors for the SVM classifier. We compare the performance of the multi-dimensional histogram sampling with several existing techniques for quantization of 3-D color space. Our experimental results indicate that different sampling techniques used for the generation of input feature vectors may increase the performance of wound segmentation by about 25%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Spot-Enhancement Anisotropic Diffusion Method for the Improvement of Segmentation in Two-dimensional Gel Electrophoresis Images, Based on the Watershed Transform Algorithm

Introduction Two-dimensional gel electrophoresis (2DGE) is a powerful technique in proteomics for protein separation. In this technique, spot segmentation is an essential stage, which can be challenging due to problems such as overlapping spots, streaks, artifacts and noise. Watershed transform is one of the common methods for image segmentation. Nevertheless, in 2DGE image segmentation, the no...

متن کامل

Pair Correlation Integral for Fractal Characterization of Three-Dimensional Histograms from Color Images

The pair correlation integral is used to assess the intrinsic dimensionality of the three-dimensional histogram of RGB color images. For application in the bounded colorimetric cube, this correlation measure is first calibrated on color histograms of reference constructed with integer dimensionality. The measure is then applied to natural color images. The results show that their color histogra...

متن کامل

Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation

Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...

متن کامل

Color scene transform between images using Rosenfeld-Kak histogram matching method

In digital color imaging, it is of interest to transform the color scene of an image to the other. Some attempts have been done in this case using, for example, lαβ color space, principal component analysis and recently histogram rescaling method. In this research, a novel method is proposed based on the Resenfeld and Kak histogram matching algorithm. It is suggested that to transform the color...

متن کامل

Images Segmentation Method Based on A Multi Scale Analysis of 2D Histograms

--In this paper we propose an image segmentation method based on multi-scale analysis using wavelets, this method has been developed and adapted to detect road signs (road signs and traffic lights). It is an approach to highlight objects in a road scene especially objects corresponding to a road signs. It relies on the use of 2D histograms highlighting the different modes and based on operation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005